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Several phenomenological self-energies have been presented to describe the pseudogap in cuprates. Here, we
offer a derivation of the self-energy in two dimensions due to pair formation and compare it to photoemission
data. We then use our results to address several questions of interest, including the existence of magneto-
oscillations in the presence of the pseudogap and the two-length-scale nature of vortices in underdoped
cuprates.

DOI: 10.1103/PhysRevB.80.220513 PACS number�s�: 74.25.Jb, 74.40.�k, 74.20.Fg

Various models for the self-energy have been presented to
describe photoemission spectra for the cuprate pseudogap
phase.1 The basic functional form is

��k,�� =
�2

� − Xk + i�0
, �1�

where � is the energy gap2 and �0 is the broadening. For the
pairing scenario, Xk=−�k, where �k is the single-particle dis-
persion. This Ansatz has a long history going back to the
original BCS theory,3 where it implicitly describes broaden-
ing due to impurities.4

Lee et al.5 were able to derive the same functional form
for a one-dimensional density wave state, with Xk=�k+Q,
where Q is the wave vector of the density wave. In this
one-dimensional case, long-range order is not present ��2

���2��. The result was derived at lowest order restricting to
static thermal fluctuations. In this case, �0 is replaced by
�2=vF /�, where vF is the Fermi velocity and � is the corre-
lation length. A similar derivation in two dimensions yields
instead6

− Im ��k,�� =
�2

��� + �k�2 + �2
2

. �2�

Equation �1� was proposed some time ago to describe data
in the pseudogap phase of the cuprates.7–9 In Ref. 7, it was
motivated by a “zero-dimensional” approximation where the
fermion dispersion is ignored �i.e., �k−q��k� when doing the
momentum integration ����DG, where D is the boson
propagator and G is the fermion Green’s function�. In this
case, �0 in Eq. �1� reduces to that of time-dependent
Ginzburg-Landau theory and should scale approximately as
T−Tc 	as compared to the �T−Tc behavior of �2 in Eq. �2�
.
This was found to give a good account of the T dependence
of the photoemission data above Tc for underdoped cuprates
at the antinodal points of the Brillouin zone �where the
d-wave energy gap is largest�.7 It was claimed in this work
that this functional form could be motivated in higher dimen-
sions as well, but as we show here, this is dependent on the
value of two physical parameters, � /Tc and vF /�0Tc.

Recently, Senthil and Lee10 proposed a related Ansatz for
the zero-temperature limit, which was motivated by a desire
to address magneto-oscillation data in the cuprates. Their
Ansatz, though, leads to three spectral peaks, as opposed to
Eq. �1� that either yields two peaks �gapped case� or one

peak �gapless case� depending on the ratio �0 /�. Their result
is similar to a related one derived for a spin-density wave by
Kampf and Schrieffer.11 We note that both results seem to be
at variance with the expectation that the energy gap should
be confined to the ordered and “renormalized classical”
phases, and therefore should not be present in the zero-
temperature limit unless ordering is present.12

In this Rapid Communication, we provide a derivation of
the fermion self-energy due to pairing including both the
static thermal fluctuations as in Refs. 5 and 6 and the dy-
namical fluctuations as in Ref. 7. Above Tc, we find a result
in two dimensions which contains aspects of both Eqs. �1�
and �2�, with the dynamical broadening ��0� dominating over
the thermal broadening ��2� if vF /�0� is small relative to
unity �this ratio is � in BCS theory�, where �0 is the bare
coherence length. With a reasonable choice of parameters,
we find that it quantitatively fits photoemission data for un-
derdoped cuprates. At T=0, we find that for these same pa-
rameters, three spectral peaks are indeed present in agree-
ment with the work of Senthil and Lee, though for BCS
parameters, only a single peak occurs.

To lowest order, the electron self-energy is obtained by
convolving the pair propagator with the hole propagator,

��k,�n� = − T�
m
� ddq

�2��dD�q,	m�G0�q − k,	m − �n� ,

�3�

where D is the pair propagator and G0 is the bare Green’s
function �G0

−1= i�n−�k�, with the sum over boson Matsubara
frequencies. In the BCS approximation, D is �2
�q�
�	�,
immediately giving rise to Eq. �1� with �0=0+. In the ab-
sence of long-range order,

D−1 = N0�x + �0
2q2 + �	m� , �4�

with13 x��T−Tc� /Tc, ��� / �8Tc�, and �0�vF /Tc. N0 is the
density of states per unit cell. For TTc, the dominant con-
tribution to the Matsubara sum comes from the branch cut of
D on the real axis. This leads to �coth�	 /2T��2T /	�,

��k,�n� =
T

N0
� ddq/�2��d

x + �0
2q2

1

i�n + i�x + �0
2q2�/� + �q−k

.

�5�

Evaluating �d=2 is assumed from here on�, we find that
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� =
− i�̃2

��� + �k�2 + �2
2
tan−1

��� + �k�2 + �2
2

− i�� + �k� + �̃0

, �6�

with �̃2= T
2�N0�0

2 , �2=vF
�x /�0, and �̃0=2x /�. Although this

formula does a good job of reproducing the filling in of the
pseudogap with temperature seen by photoemission, the T
dependence of the spectral gap magnitude is not properly
reproduced—in particular, the spectral peak position exceeds

�̃ in magnitude for a large range of T. This problem can be

traced to the definition of �̃ itself. In Ref. 7, this difficulty
was avoided in the derivation of Eq. �1� by ignoring the q
dependence of the second term in Eq. �5�. By making this
approximation, this term could be extracted outside the q
integral. The q integral then reduces to the definition of the
fluctuational gap, ��2�. The issue, though, is that the static
terms giving rise to �2 are ignored in this approximation.

These troubles ultimately stem from the fact that Eq. �4�
is a low q, low 	 approximation of the true pair propagator.
Use of Eq. �4�, though, closely matches the exact result if the
thermal approximation �coth replaced by 2T /	� is used to
cut off the 	 integration, and the q integral is cut off at
1 /�0.14 Evaluating Eq. �5� with the cutoff gives

� = −
T

4�N0�0
2

1
�c

ln

2�c�a +
b

x + 1
+

c

�x + 1�2 +
2c

x + 1
+ b

2�c�a +
b

x
+

c

x2 +
2c

x
+ b

,

�7�

where a=−1 /�2, b=−vF
2 /�0

2+2i��+�k� /�, and c= ��+�k�2

+xvF
2 /�0

2. At high frequencies, this reduces to

�high =
T

4�N0�0
2�

ln
x + 1

x
. �8�

Noting that in this approximation, the fluctuational gap is

��2� =
T

4�N0�0
2 ln

x + 1

x
, �9�

we now find the proper high-frequency behavior of the self-
energy, ��2� /�.

Formally, ��2� has a singular temperature dependence, but
for purposes here, we will simply set its value to experiment,
noting that photoemission spectra indicate no temperature
dependence of � at the antinode.7 In Fig. 1�a�, the real and
imaginary values of the self-energy from Eq. �7� versus � are
shown for x=0.1, and in Fig. 1�b� the half width at half
maximum of the imaginary part is shown versus x. The pa-
rameters used were � /Tc=4 and vF /�0Tc=1. These values
were chosen so as to give a good account of the experimental
half width versus x extracted from fitting photoemission data
on underdoped cuprates using Eq. �1�.7 We note that the
� /Tc ratio of 4 �as compared to the BCS value of 1.76� is a
typical value observed in cuprates. The value of vF /�0Tc of 1
�as compared to the BCS value of 1.76�� acts to emphasize

the dynamic broadening ��̃0� over the static broadening ��2�.
The ratio of these two values is only 1/4 �compared to the

BCS value of �� and will have further consequences as dis-
cussed below. As mentioned before, the resulting spectral
functions have either two peaks or one peak depending on
the magnitude of the half width relative to �, with examples
shown in Fig. 2. This crossover over from gapped to gapless
behavior occurs when the ratio of the half width to � is about
�2, the same as from Eq. �1�.

In the zero-temperature limit, the imaginary part of the
self-energy is given by

− Im ��k,�� =� ddq

�2��d� d	

2�
	sgn�	� − sgn�	 − ��


�Im G�� − 	,k − q�Im D�	,q� . �10�

Without cutoffs, this integral is

− Im � =
1

4�N0�0
2 Im ln

� + �k

�2
−

i�2

�̃0

+�1 +
�� + �k�2

�2
2

�k

�2
−

i�2

�̃0

+�1 +
�k

2

�2
2 +

2i�

�̃0

,

�11�

where x in Eq. �4� is now a tuning parameter besides
temperature—magnetic field, etc., i.e., �H−Hc2� /Hc2—with
x=0 corresponding to the quantum critical point where long-
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FIG. 1. �Color online� �a� Self-energy from Eq. �7�. Parameters
are x��T−Tc� /Tc=0.1, � /Tc=4, and vF /�0Tc=1. �b� Half width of
Im �, denoted as �, versus x compared to the data of Ref. 7.
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FIG. 2. �Color online� Spectral functions ��k=0� using the same
parameters as Fig. 1 for x=0.1 and x=2.
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range order appears.15 The result is that −Im � always grows
with frequency, saturating to a constant as �→�. The real
part of the self-energy can be obtained by numerical
Kramers-Kronig,16 and it is found that the resulting spectral
function is gapless. The reason is that formally, the integrals
defining ��2� are divergent, so cutoffs must be invoked, this
time not only in momentum but also in frequency as well.
We choose to cut off the q integral at 1 /�0 and the 	 integral
at 1 /�. Re-evaluating, we find that

− Im � =
1

2�2N0�0
2 Im�

q1

q2

dqx	c�x + 1�tan−1 c�x + 1�

− c�x�tan−1 c�x�
 , �12�

where c�y�−1=�y+qx
2+ i���−vFqx /�0�, q1=max	0, ��

−1 /���0 /vF
, and q2=min���0 /vF ,1� with q now expressed
in units of 1 /�0. Similarly, we find that

��2� =
1

8�2N0�0
2�
��x + 1�ln

�x + 1�2 + 1

�x + 1�2 − x ln
x2 + 1

x2

+ 2 tan−1�x + 1� − 2 tan−1�x�� . �13�

��2� is then used to set the prefactor in Eq. �12�. We can now
evaluate −Im � by doing one numerical integration. We note
that in this approximation, −Im � vanishes beyond a fre-
quency �c=1 /�+vF /�0 due to the cutoff in 	. In fact, we
note that the various cutoffs define two other frequency
scales as well, �1=1 /� and �2=vF /�0, with �c being their
sum. �1 is associated with the dynamic part of the pair
propagator, and �2 with the static part.

In Fig. 3�a�, we plot the self-energy from Eq. �12�, and in
Fig. 3�b� the resulting spectral function, for the same param-
eters as in Fig. 1�a�. One clearly sees the existence of three
spectral peaks. We can contrast this behavior with that in Fig.
4, where we show the same as Fig. 3 but now for BCS
parameters. In the latter case, the asymptotics of the self-
energy sets in at a frequency beyond �, and therefore no
spectral gap emerges. Similar results are obtained if one re-
places the propagator in Eq. �4� by that in a magnetic field in
the lowest Landau-level approximation.

Our T=0 results can be compared to the recent work of
Senthil and Lee,10 where a separable approximation for the

propagator was used. In their work, a propagating form was
considered,

Im D =
�2�2�−1

�q2 + �−2�3/2 	
�� − 	� − 
�� + 	�
 . �14�

The resulting self-energy at T=0 is equivalent to that for
electrons coupled to an Einstein mode with frequency �.3

That is ��0�,

− Im � =
vF

2�

�2��� − ��
�� + �k − ��2 + vF

2�−2 , �15�

where � is the step function. This has a gap between −� and
+� �with the real part of the self-energy diverging logarith-
mically at ���. As a consequence, the spectral function con-
sists of incoherent peaks at �� and a quasiparticle pole
within this gap.

A similar result occurs if one assumes a diffusive behavior
which is more appropriate for the disordered phase,

Im D = −
2�2��−1

�q2 + �−2�3/2
	

�2 + 	2 . �16�

The resulting self-energy at T=0 is ��k=0�,

− Im � =
��2

��4�2 + �2���

�
tan−1��

�
� + ln�1 +

�2

�2�� ,

�17�

where we have used that �=vF /�. This functional form 	Fig.
5�a�
 also leads to a spectral function with three peaks 	Fig.
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FIG. 3. �Color online� �a� Self-energy from Eq. �12�. Parameters
are x=0.1, � /Tc=4, and vF /�0Tc=1. �b� Spectral function ��k=0�,
where a constant of 0.1� has been added to −Im � so as to resolve
the delta functions.
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FIG. 4. �Color online� Same as Fig. 3 but for � /Tc=1.76 and
vF /�0Tc=1.76�.
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FIG. 5. �Color online� �a� Self-energy from Eq. �17�, with �
=0.1�. �b� Spectral function ��k=0�, where a constant 0.1� has
been added to −Im � so as to resolve the quasiparticle pole.
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5�b�
.
It is interesting to note that in the Senthil and Lee formal-

ism, the only energy scale is �, and therefore a spectral gap
occurs as long as the ratio of � to � is not too large. One
reason for the difference from our work is that in their sepa-
rable approximation, � is independent of q, whereas from
Eq. �4�, one finds that the relaxational rate is strongly q de-
pendent; that is, �q=�−1�x+�0

2q2�.17 We also note that for-
mally the 	 integral of Eq. �16� is logarithmically divergent
when used to define ��2�, but when calculating the self-
energy, this is compensated by the convergence of the q in-
tegral in this separable approximation. That is, Eq. �17� is
well behaved without the need to explicitly invoke cutoffs.

We now turn to the question of the electron pockets ob-
served by quantum oscillation experiments.18 How can such
pockets survive in the presence of a large pseudogap since
these electron pockets should originate in the antinodal re-
gions of the zone?19 As Senthil and Lee point out,10 as one
indeed finds a central peak inside the gap in the low-
temperature limit, the existence of magneto-oscillations is
not a surprise �though in our case, we find a spectral gap only
if the asymptotics of the self-energy sets in below ��. More
generally, quantum oscillations are seen in type-II supercon-
ductors, sometimes for fields much less than Hc2. At a semi-
classical level, this can be understood since the expectation
value of the superconducting order-parameter averages to
zero over a cyclotron orbit due to phase winding around the
vortices. As a consequence, type-II superconductors are gap-
less at high magnetic fields, with the energy gap causing a

broadening of the Landau levels. Quantum mechanical simu-
lations have demonstrated the evolution of the low-energy
vortex core bound states into Landau levels as the field is
increased,20 and similar calculations have been used to ad-
dress the quantum oscillation data in the cuprates.21 Exten-
sion of these methodologies to a potential vortex liquid phase
above the resistive Hc2 would be illuminating. We remark
that the gapless peak in our work �and Senthil and Lee’s�
traces out a large Fermi surface, and therefore density wave
formation would have to be invoked to explain the small
electron pockets that are actually observed.22

We note that for the parameters in Figs. 1–3, the value of
vF /�� is smaller than �0 by a factor of 4�. If we identify the
former with the size of the vortex core and assume a typical
value of 30 Å, then the latter is approximately 400 Å. Such
a long length has been identified from terahertz conductivity
measurements23 and implies a large “halo” which exists
around the vortex cores, leading to the concept of cheap fast
vortices, with the resistive Hc2 where these halos
overlap.10,24 Therefore, a large � /Tc ratio and a small vF /�0�
ratio are conducive to obtain an extended regime above Tc
and Hc2 where an energy gap exists without long-range or-
der, a regime that should be characterized by fluctuating vor-
tices.
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